viernes, 20 de abril de 2007

Maratón de problemas

Los tres siguientes problemas pertenecen a pruebas individuales presentados, por la Sociedad Asturiana de Educación Matemática "Agustín de Pedrayes" (SADEM) en diversas convocatorias.

1) ¡MENUDOS IMPUESTOS!:
En un perdido país de Oriente Medio, los ciudadanos han de pagar numéricamente el mismo % de impuestos que las rupias que ganan por semana. ¿Cuál será el salario ideal?

2) CAJAS CON BOLAS:
Tenemos tres cajas idénticas. En una hay dos bolas blancas y tiene escrito en la tapa el letrero BB. En otra hay dos negras y pone en la tapa NN. En la tercera, hay una bola blanca y otra negra y la tapa pone BN.
Un incordiante mueve las tapas de modo que ninguna corresponda con su contenido. ¿Cómo podemos saber el contenido exacto de cada una de las tres cajas, sacando una bola de la que elijamos?

3) BATALLÓN DE EXÁMENES:
Tres estudiantes, Antonio, Berta y Carlos participan en una serie de pruebas de Matemáticas. En cada prueba, el que queda primero recibe X puntos, el segundo recibe Y puntos y el tercero Z puntos, siendo X, Y, Z números enteros mayores que cero y tales que X>Y>Z. No hay empates. En total Antonio acumuló 20 puntos, Berta 10 puntos y Carlos 9 puntos. Antonio quedó el segundo en la prueba de Álgebra. ¿Quién quedó segundo en la prueba de Geometría?

Tendréis que hacer uso de vuestro ingenio para resolverlos. Espero vuestras respuestas ¡Suerte!

14 comentarios:

koinor dijo...

1)el mejor sueldo es 50 rupias
2)debería elegir la caja cuidadosamente para generar contradicciones pero todavia no lo tengo
3)es irrelevante la cantidad de examanes?

Sable dijo...

1)Koinor dijo:"el mejor sueldo es 50 rupias" Exacto koinor, sería encontrar el máximo de f(x)=x-(x/100)x (donde x es el sueldo) que se da para cuando x=50, percibiendo 25 rupias.

2)No hay contradicciones, sino que hay que ir descartando posibilidades y elegir bien donde meter la mano. Hay un dato en el enunciado que es muy importante y que a veces puede ser pasado por alto. ¡Sigue así!

3)Muy bien Koinor, este es un poco más complicado. Solo existe una cantidad de exámenes posibles. Es muy curioso y se puede sacar el número de exámenes y más datos, de forma ingeniosa, pero sencilla. Yo almenos, tuve que sacar el número de exámenes, no creo que se pueda solucionar sin este dato. ¡Adelante!

koinor dijo...

2)me parece que tendríamos que sacar una bola del que dice NN, si sale enegra claramente s el que tendría que decir BN entonces el que dice BB es NN y viceversa. Pero si sale blanca me encuentro con dos opciones que por ahora solo las encuentro resueltas con otra bola

Sable dijo...

Hola Koinor:
2)Si metes la mano en NN, necesitas dos extracciones. Por lo que ya sabes que no debes sacar la bola de la caja que pone NN.

Queda decir como se sabe el contenido de cada caja. Y de donde sacar la bola.

Lobo dijo...

2) Sacas una bola de la caja BN, que sabes que tiene que tener dos bolas idénticas, por lo que nos quedan las cajas NN y BB.

-Supongamos que obtienes una bola blanca, es decir, la caja contiene 2 bolas blancas. Como NN no puede contener 2 bolas blancas(están en BN) ni 2 bolas negras, entonces NN ha de tener blanca-negra, y BB contiene 2 bolas negras.
-Si consigues bola negra en BN la disposición quedaría blanca-negra en BB y 2 bolas blancas en NN

Estoy pensando en el 3) jeje
Saludos!

Sable dijo...

Perfecto lobo!. Muy bien explicado. La cuestión era tener en cuenta que "las tapas no corresponden ninguna al contenido real" y situar a BN, que es la que da problemas,

al igual que en los problemas en los que hay una persona que dice la verdad, otro mentira y un tercero, al que hay que identificar, que dice verdades y mentiras al azar.

Suerte con el 3). Me alegra que estés con ello :)

Saludos!

Lobo dijo...
Este comentario ha sido eliminado por el autor.
Lobo dijo...

Tras pensar otro poco, creo que he llegado también a la solución del 3)
En primer lugar, para simplificar voy a llamar A, B y C respectivamente a Antonio, Berta y Carlos.

Si A queda segundo en Álgebra, o bien B o bien C tienen que haber quedado primero an Álgebra.
B tiene 10 puntos en total así que, contando con que hay almenos dos pruebas y X>Y>Z toman valores >0, X sería menor o igual a 9 puntos.
Sin embargo, ha de haber como mínimo 3 pruebas porque 9+numeromenora9 <20.
Por otra parte, X será menor o igual a 8, ya que B tiene 10 puntos en 3 pruebas.
X no puede ser 7,ya que C=>7+1+1=9 y B=>7+2+1=10, y no pueden haber dos terceros premios con puntuación de 1 a la vez.
Con un valor de X menor a 7, A no alcanzaría jamás 20 puntos.

X=8

Por lo tanto, A ha ganado 8+8+4=20, B 8+1+1 y C 4+4+1.

Carlos quedó segundo en la prueba de Geometría ;)

Sé que no he seguido demostrando si pudiesen haber más pruebas en lugar de 3, quizás en otro rato xD

Sable dijo...

Correcta la solución de lobo!

Fantástico lobo. Has deducido muy bien que la máxima puntación es de 8, porqué no puede ser 7, demás, has supuesto que debía haber tres pruebas, y tuviste suerte, ya que el número de pruebas es único.

Vease que:

Cada prueba otorga un total de T=X+Y+Z puntos. Y ya que hay n pruebas, y que tras éstas se habrán repartido n(X+Y+Z). Esto último equivale a 39(=20+10+9). Igualemos pues:

n(X+Y+Z)=39

Según esto 39 descompone en producto de dos números. Y la única descomposición entera posible es 3x13. Siendo claramente 3=n el número de pruebas y 13=X+Y+Z. Esto último facilita mucho las cosas.

Felicidades de nuevo. E intentaré publicar una solución en la que se vean conjuntamente tus argumentos y los mios.

Saludos! ;)

Lobo dijo...

Gracias por las felicitaciones, no se me había ocurrido empezar por ese camino.

Por cierto, ésto me recuerda que he empezado un poco bruscamente a postear xD. Soy yo el que debería felicitarte por tu blog, lo descubrí esta semana a través de acertijosymáscosas y la verdad es que me gusta bastante.

Lo dicho, enhorabuena por el blog y espero convertirme en un habitual ;)

Sable dijo...

Agradezco los ánimos lobo, y espero no defraudar a nadie.

Hasta pronto! :)

sexy dijo...

情趣用品,情趣用品,情趣用品,情趣用品,情趣用品,情趣用品,情趣,情趣,情趣,情趣,情趣,情趣,情趣用品,情趣用品,情趣,情趣,A片,A片,情色,A片,A片,情色,A片,A片,情趣用品,A片,情趣用品,A片,情趣用品,a片,情趣用品

A片,A片,AV女優,色情,成人,做愛,情色,AIO,視訊聊天室,SEX,聊天室,自拍,AV,情色,成人,情色,aio,sex,成人,情色

免費A片,美女視訊,情色交友,免費AV,色情網站,辣妹視訊,美女交友,色情影片,成人影片,成人網站,H漫,18成人,成人圖片,成人漫畫,情色網,日本A片,免費A片下載,性愛

情色文學,色情A片,A片下載,色情遊戲,色情影片,色情聊天室,情色電影,免費視訊,免費視訊聊天,免費視訊聊天室,一葉情貼圖片區,情色視訊,免費成人影片,視訊交友,視訊聊天,言情小說,愛情小說,AV片,A漫,AVDVD,情色論壇,視訊美女,AV成人網,成人交友,成人電影,成人貼圖,成人小說,成人文章,成人圖片區,成人遊戲,愛情公寓,情色貼圖,色情小說,情色小說,成人論壇


情色文學,色情小說,情色小說,色情,寄情築園小遊戲,情色電影,aio,av女優,AV,免費A片,日本a片,美女視訊,辣妹視訊,聊天室,美女交友,成人光碟

A片,A片,A片下載,做愛,成人電影,.18成人,日本A片,情色小說,情色電影,成人影城,自拍,情色論壇,成人論壇,情色貼圖,情色,免費A片,成人,成人網站,成人圖片,AV女優,成人光碟,色情,色情影片,免費A片下載,SEX,AV,色情網站,本土自拍,性愛,成人影片,情色文學,成人文章,成人圖片區,成人貼圖

Anónimo dijo...

muy bueno, pero me gustaria saber la solucion, por que llevo rompiendome la cabeza y no doy con la solucion a lo de las cajas, un saludo

nenaes dijo...

para el problema de las caja sera... cojo una de la que marca bn si sale n es las negras por tanto hay que cambiar las otras dos, y si sale blanca es que es la de las blancas, por que que hay que cambiar las otras dos

Otras entradas